GradientAI
https://digitalocean.com/products/gradientai
LiteLLM provides native support for GradientAI models.
To use a GradientAI model, specify it as gradient_ai/<model-name> in your LiteLLM requests.
API Key & Endpoint​
Set your credentials and endpoint as environment variables:
import os
os.environ['GRADIENT_AI_API_KEY'] = "your-api-key"
os.environ['GRADIENT_AI_AGENT_ENDPOINT'] = "https://api.gradient_ai.com/api/v1/chat"  # default endpoint
Sample Usage​
from litellm import completion
import os
os.environ['GRADIENT_AI_API_KEY'] = "your-api-key"
response = completion(
    model="gradient_ai/model-name",
    messages=[
        {"role": "user", "content": "Hello, how are you?"}
    ],
)
print(response.choices[0].message.content)
Streaming Example​
from litellm import completion
import os
os.environ['GRADIENT_AI_API_KEY'] = "your-api-key"
response = completion(
    model="gradient_ai/model-name",
    messages=[
        {"role": "user", "content": "Write a story about a robot learning to love"}
    ],
    stream=True,
)
for chunk in response:
    print(chunk.choices[0].delta.content or "", end="")
Supported Parameters​
| Parameter | Type | Description | 
|---|---|---|
temperature | float | Controls randomness (0.0-2.0) | 
top_p | float | Nucleus sampling parameter (0.0-1.0) | 
max_tokens | int | Maximum tokens to generate | 
max_completion_tokens | int | Alternative to max_tokens | 
stream | bool | Whether to stream the response | 
k | int | Top results to return from knowledge bases | 
retrieval_method | string | Retrieval strategy (rewrite/step_back/sub_queries/none) | 
frequency_penalty | float | Penalizes repeated tokens (-2.0 to 2.0) | 
presence_penalty | float | Penalizes tokens based on presence (-2.0 to 2.0) | 
stop | string/list | Sequences to stop generation | 
kb_filters | List[Dict] | Filters for knowledge base retrieval | 
instruction_override | string | Override agent's default instruction | 
include_retrieval_info | bool | Include document retrieval metadata | 
include_guardrails_info | bool | Include guardrail trigger metadata | 
provide_citations | bool | Include citations in response | 
For more details, see DigitalOcean GradientAI documentation.